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SECTION I

INTRODUCTION

Addressable optical correlators might well find uses in
target recognition and discrimination. The work reported on is
concerned with some of the hard technical details involved in
phase-only filter design for addressable optical correlators.

The work had two major objectives. In the 1984 - 1985 pe'riod the
author formulated the design of phase-only filters for optical
correlators as a complicated nonlinear nondifferentiable
optimization question in a very large number of variables. The

latest edition of such a formulation is presented in some detail
in Section II. In the same period the author observed a
heretofore unnoticed, or at least apparently unpublished,
difficulty in the optical correlation process using phase-only
filters. This difficulty arises if a warm target resides in a
warm background and the average temperature of the target and the
average temperature of the background are close. This difficulty
is spelled out in Section IV. A preliminary but necessary
detailed technical discussion of the correct computer simulation
of the optical correlation process is given in Section III. A
description of the target imagery used in this study is also
given in Section III. Section V gives a much more detailed
discussion of the goals of this work as well as a general

description of the mathematical solution of the complicated
optimization problem involved in phase-only filter design. Some
of the mathematical details of this approach are given in The
Appendix. Four solutions to the aforementioned difficulty in the
use of phase-only filters for optical correlation are given in
Section VI, Section VII, Section VIII, and Section IX. What
currently appears to be the favored solution can be found in
Section VI, though the very recent solution given in Section VII

1



holds great promise. The idea propounded in Section VIII gives a

theoretically close to ideal solution to the phase-only filter

problem but requires a modification to the optical correlator

architecture. The idea presented in Section IX requires no

modification in the correlator architecture, but instead requires

a change in the algorithm. It also suffers from the major

difficulty of not being translation invariant (the others are, at

least to a good approximation), but might prove useful for

pointing and tracking. Conclusions are given in Section X.

2



SECTION II

THE FORMULATION OF PHASE-ONLY FILTER DESIGN
AS A MATHEMATICAL OPTIMIZATION QUESTION

The standard correlation setup in the plane R2 using

discriminant functions will be sketched. References 1 - 7
contain exhaustive treatments of the background on optical
correlation necessary to understand this section. For any pair

of complex-valued square-integrable functions f and g defined 'on
the plane, define the symbol <f,g> to be the usual complex inner

product f 2f(y)g*(y)dy. Here y = (ylY 2 ) is a generic point in

the plane, and g is the complex conjugate of g. The symbol

<f,g> is linear in f, conjugate.linear in g, and <f,g> = <g,f>

Note that <f,f> is the square of the usual L2-norm of f. For any

pair of points x = (x,,x 2) and y = (yl,y2) in the plane and any
function g on the plane, let gx(y) = g(y - x). If g is initially

viewed as being centered over the origin (0,0), then gx should be

viewed as being g translated so as to be centered over x. Any

complex-valued square-integrable function f on the plane may be

considered to be an image. This level of generality will prove
useful in later sections. A good discriminant function h is a
complex-valued square-integrable function on the plane which has

the property that the magnitude of <fhx> (or equivalently

I<fhx>I2) is relatively large if there is an object of interest

in f near x and has the property that the magnitude of <fhx> (or

equivalently I<f,hx>I 2) is relatively small otherwise. Let 2

denote the two-dimensional Fourier transform operator. It is a
simple consequence of the Parseval theorem that <fhx> =

r-(7(f)'T(h)*)(x). This formula indicates the manner in which a

3



discriminant function can be implemented in an optical correlator

of standard design. This implementation is summarized in the

following algorithm:

(i) input the coherent image f;

(ii) use a lens to compute the Fourier transform 7(f);

(iii) multiply 7(f) (using a transparency, spatial light

modulator, etc.) by the filter 7(h) corresponding to the

discriminant function h;

(iv) use a lens to compute the inverse Fourier transform

r1(r(f).r(h)*) of this product;

2(v) use a detector to measure the light intensities I<f,hx> .

Figure I contains a schematic of an optical correlator of

standard design. A particular choice of device used to carry out

the crucial multiplication of 7(f) by the filter 7(h) in step

(iii) imposes severe constraints on admissible choices of the

filter 7(h). These constraints must be taken into account in

filter design.

In a properly designed optical correlator the pixels on the

detector should be in a one-to-one correspondence (up to scaling)

with the same set of pixels in the input plane. Input devices

and detectors are, of course, bounded in extent. Therefore all

images encountered in practice of necessity must vanish outside

the bounded region in the plane corresponding to the face of the

input device. This basic fact must be taken into consideration

in filter design. It may be assumed that the pixels on the

detector correspond to a subset, perhaps all, of the pixels on

the input device. There is no point in making the face of the

detector any larger. Having chosen a carefully crafted filter

7(h), there then will be something of interest in the image f at

4
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those places x where I<f,hx>l2 is relatively large and nothing of

interest at those places x where I<f,hx>I2 is relatively small.

Next, a mathematical formulation of the intrinsic

performance or signal-to-noise ratio of a discriminant function

h, implemented in an optical correlator of standard design,

against a training set of images will be given. This

mathematical formulation will be nothing but a numerical measure

of tLe most straightforward and naive properties that a good

discriminant function should possess. Let f1 ,...,n,..fm, the

training set, be a finite sequence of images. The images can be

ordered so that f1,... ,fn will be true targets, usually centered

over the origin (0,0), and fn+1,...,fm will be false targets

which must not be confused with fl,. .. f In this formulation

there must always be at least one true target, but there need not

be any false targets, in which case n will equal m. For each

integer i between 1 and n, let Bi be a box or any other region in

the correlation plane, usually but not necessarily close to the

origin (0,0), but always containing the origin (0,0). In most

instances each Bi (1 < i < n) certainly should be a subset of the

detector face close to the origin (0,0). In order for h to be a

good discriminant function the largest of the measured optical

intensities I<fi,hx>I2 ( x in Bi) in the correlation plane should

be relatively large for each integer i between 1 and n. Here the

best choice of x in Bi may well vary with the choice of the

integer i between 1 and n. In addition, the smallest of these

relatively large signals should be as large as possible. In

addition, let Bi be empty (n + 1 < i < m) for convenience.

Finally, let Ri be a region in the correlation plane which at

least contains the detector face and Bi ( 1 < i < m). Each Ri

(1 < i " m) maa coincide with the entire detector plane or may be
, 2

somue region in between. Each of the false signals j<Ti x>1

(1< i < m) should be small for all choices of x in R- B.

6
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(1 < i < m). The first, most basic fundamental figure of merit

used throughout this report is the signal-to-noise ratio of h,

defined to be

SNR1 (h) = T1 (h)/N,(h), (1)

where

= min max I<fi,hx>I2  (2)

T1 (h) 1< i < n x E B.

and

Nl(h) = viax max I <fi,hx> 2 (3)
< i < m x E R i - B i

Here the subscript 1 is used on SNRI(h), Tl(h), and Nl(h) because
in later sections other figures of merit will be considered in

slightly different contexts. Call Tl(h) the threshold of h and

call Nj(h) the noise of h. Tj(h) is the largest threshold which

will accept each of the images fl,...j n as a true target. This

definition makes sense, for it is merely the ratio of the

smallest peak signal given by h off a true target to the largest

false signal given by h. In order for h to be useful in a

threshold detector, it is necessary that SNRI(h) be as large as

possible (certainly greater than 1) while keeping Tj(h) of

reasonable size. SNR 1 is a slight generalization of the

definition of signal-to-noise ratio introduced in Reference 8.

In the case n = m = 1, SNR 1 is reminiscent of the notion of

signal-to-clutter ratio used in radar (cf. Reference 9, p. 1-7).

For any givea discriminant function h, the number SNR,(h) depends

on the choice of fi 's, Bi's, and Ri's, but this dependence is

usually not explicitly noted when it is clear from context.

A discriminant function h gives rise to a (continuous)

7



phase-only filter provided each 7(h)*(k) is either a complex

number of modulus 1 or, extending the notion of phase-only filter

a bit, is 0. A discriminant function h gives rise to an n-state

(discrete) phase-only filter provided each 7(h) (k) is one of the

nth roots of unity, exp(2rik/n), 0 < k < n. Of special interest

in this report are those n-state phase-only filters for which n =

2 and n = 16. If n = 2, then each 7(h) (k) is +1, -1, or 0, and

7(h) is then termed a binary phase-only filter, n-state

phase-only filters for which n = 2 or n = 16 are of much interest

since they potentially can be implemented in addressable spatial

light modulators (References 10 - 15). With such applications in

mind, 7(h) (k) usually is 0 for all k outside of some square box

centered at origin (0,0) in the filter plane and is constant on

subsquares corresponding to device pixels.

Next, what are the free parameters involved in the design of

a good continuous phase-only filter? There are certain free

parameters which involve the physical features of the optical

correlator. Among these are the number of pixels on and/or the

resolution of the input device, the number of pixels on and/or

the resolution of the detector, the physical dimensions of the

correlator, the characteristics of the lenses, and the wavelength

of coherent radiation used. These are important engineering

questions that probably will be resolved by device constraints

and engineering tradeoffs determined by the particular

application of the correlator. The proper choice of these free

parameters is not addressed in this work. Another very important

question in the optical correlator design is the proper choice of

scaling in the Fourier or filter plane. In other words, what

portion of the the filter plane should be intercepted or filtered

by the spatial light modulator? Too small of a scaling will

result in important spatial frequencies of potential target

scenes being ignored, while too large of a scaling will result in



insufficient filtering being done, no matter how good the filter

design. For an extreme case of the latter just consider the case

in which one pixel of the spatial light modulator intercepts most

of thp important spatial frequencies of the input image. A happy

medium, chosen over a wide range of input images, is necessary.

A number of authors have written papers purporting to answer this

scaling question (see Reference 16). These efforts seem to be

misdirected and misleading. First of all, the design criteria

they employ center around reducing circuit noise when in fact the

chief problem in correlator design is discrimination of true

target from false targets (clutter). Secondly, their design

criteria are good only if there is a single image in the training

set. Phase-only filters are notoriously sensitive to

perturbations in the training set, so a training set of size one

is far too small to be of any use. Thirdly, the answer is image

dependent. This is clearly of little use for an addressable

spatial light modulator which has a bank of thousands of

different filters. The solution of the scaling problem in the

filter plane probably cannot admit a theoretical solution but

only an engineering solution which will be resolved at the point

in time at which the overall correlator design is fixed. This

report does not address this scaling problem but assumes it has

been solved in a representative manner such as described in more

detail in that portion of Section III concerned with the proper

computer simulation of optical correlators.

Once the training set fi' the regions Ri, and subregions Bi
(1 < i < m) of the filter plane have been fixed, the remaining

free parameters are entries in the matrix representing the filter
*

T(h) , each of which is an independent parameter taking on the
value zero or a complex number of modulus one. The choice of the

fi and the corresponding Ri and Bi (1 < i < m) can only be

determined by an engineering methodology involving much

experimentation and computer simulation studies. In this study

9



the fi's were supplied by the Air Force Armament Laboratory

(AFATL). The Ri's usually were chosen to be either the detector

face or the entire correlation plane, and the Bi's, after some

experimentation, were usually chosen to be a relatively small box

about origin (0,0) in the correlation plane. These choices are

discussed in detail in the next section. Having fixed the fi,

Ri, and Bi, one should design h so that 2(h) is a phase-only

filter with SNRI(h) as large as possible. One therefore can

construct an h with 7(h) a phase-only filter and with SNRI(h)

optimized only by varying these independent parameters.

Simulations reported in Reference 8 suggest that 7(h) (k) should

also be 0 for some k near and including the origin (0,0) in the

filter plane in order for SNR1 (h) to be large. In References 17 -

19 Flannery et al. give some decision rules for choosing which

pixels in 2(h) to set equal to 0 for binary phase-only filters,

but such rules do not seem well suited for the large training

sets to be considered later. It appears that an extrapolation of

the work presented here can resolve in a rational, general manner
*

the question of which pixels of 7(h) to set equal to zero for

training sets of arbitrary size, independent of whether the

filter is continuous or discrete, and then give an optimal choice

for the phases of the nonzero pixels. This study concentrated on

what seemed to be the most challenging question, the proper

choice of the pixels in 9(h) which are of modulus one. The
*

optimal choice of which pixels in 7(h) to set equal zero was

sidestepped. Instead, after a little experimentation, a quite

arbitrary square set of low frequency pixels in 7(h) were set

equal to zero. Notice that there are an enormous number of free

parameters in the optimization question of interest, for if 7(h)

is to be implemented in an L x L device, then there are L2 free

10



parameters less the number of pixels set equal to 0. In this

study L typically is 128, so L2 is 16,384, while an 11 x 11 box,

or 121, low frequency pixels were usually arbitrarily set equal

to zero. Hence, 16,263 is a typical number of free parameters

involved in phase-only filter design in this report.

Given that one has designed a good continuous phase-only

filter, how should one go about discretizing it in a rational

manner, as might be required for implementation in an actual

device? An algorithm for doing this for binary phase-only

filters was first given in Reference 8. That algorithm can

easily be extended to the case of discrete n-state phase-only

filters. It may be described geometrically as follows. Orient

the circle in counter-clockwise fashion. Let z be a point on the

unit circle greater than or equal to 1.0 but strictly less than

exp(2ri/n). Moving counter-clockwise around the unit circle, let

Ak(z) be the arc of the unit circle greater than or equal to

exp(2rik/n)z but strictly less than exp(2ri(k+l)/n)z, for each

0 < k < n. Discretize 2(h)* into an n-state phase-only filter

7(hz) as follows. If 7(h)*[i,j] is the i,j-th ent: y of 7(h)

and 2(h) [i,j] = 0, then set 7(hz) [i,j] = 0. Otherwise

7(h) [ij] is a complex number of modulus one and so lies on some

unique arc Ak(z). In this case let 7(hz) [i,j] = 6xp(2rki/n).

Finally do a one-dimensional search in your favorite manner to

find that z = z0 so that SNRI(hz) is as large as possible. This

choice of z0 then gives, at least in this sense, an optimal way

to discretize 7(h) into an n-state filter. A careful optimal

choice of z0 as prescribed can yield filters with more than twice
the signal-to-noise ratio than a random choice of z when the

training set is large. Moreover, especially for n = 16, the
perfnormance of the discretized phase-only filters faithfully

mirrors that of their continuous phase-only ancestors.

11



SECTION III

TECHNICAL DETAILS OF THE IMAGERY AND SIMULATIONS

The Air Force Armament Laboratory supplied a great deal of

the imagery used in this study. Most of the imagery was supplied

on several VAX-compatible computer tapes in two series. Each

series was produced by a visible light intensity digitizing

camera from models on a target cloth background from essentially

the same aspect and range over a swath of angles. The first

series of target images, supplied in 1986, consisted of M113,

M48, M1, and T62 images. For each target in the first series the

swath of angles consisted of 21 views, the front flush view plus

or minus 10 degrees at 1-degree increments, and an additional 21

views, the side flush view plus or minus 10 degrees with 1-degree

increments. This gave a total of 168 images. The second series

of images, supplied by the Air Force Armament Laboratory late in

1988, consisted of M1 and T62 images. For each target in the

second series the swath of angles consisted of 61 views, the

front flush view plus or minus 30 degrees with 1-degree

increments, and an additional 61 views, the side flush view plus

or minus 30 degrees with 1-degree increments. This gave a total

of 244 images. Each image was 128 pixels by 128 pixels in size.

The intensity of each pixel was scaled to be an integer between 0

and 255 and was stored in byte format. Additional images

consisting of targets of strategic interest were furnished in

1988 and 1989. This report is not sequenced in chronological

order of accomplishment or discovery but in the ex post facto

most logical order of exposition. In each succeeding section the

images used will be carefully identified as to type and series.

Each target in the two series of imagery needed to be

seprated from its background. To facilitate this the targets

were uniformly brightly illuminated so that the background

12
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intensity off the target cloth was digitized to be 255. The

target then was simply extracted from the background by setting

all pixels with intensity value 255 equal to 0. This process
certainly worked well enough to provide sufficiently good clean
target imagery, unencumbered by a background, for a conceptual

study such as this. A coherent optical correlator utilizes the
amplitudes of an image rather than its intensities (References 1 -
7). It therefore was necessary to convert the furnished
intensity imagery to amplitude imagery for a correct computer
simulation of a coherent optical correlator. To accomplish this

for a clean target intensity image, each pixel was divided 255,
the square root of each quotient was taken, the square root was
multiplied by 255, and then this scaled square root was rounded

to the nearest integer between 0 and 255. This gave a very good

approximation to a clean target amplitude image unencumbered by a
background. This final converted imagery was that used in
simulation studies. Figure 2 shows a side view of an M48 from
the first series of target images typical of the imagery used in
this study. Note that the conversion from intensity imagery to

amplitude imagery had a tendency to make each image somewhat

flatter, and therefore only made it harder to discriminate one

class of target from another.

The simulations to be described in the following sections
were done in a manner to model reality as closely as possible.

In computer simulations the entire plane first of all is replaced

by a square centered at (0,0). The larger the square the better
the approximation to the plane in the general neighborhood of

(0,0). This square is made into a periodic pattern in the plane

by identifying opposite edges. Such a periodic pattern in the

plane can be viewed as one such pattern completely occupying the
surface of a doughnut. Such a doughnut locally replicates the

plane well at points not too remote from (0,0). This continuous

doughnut is then replaced by a discrete doughnut periodic along

each axis. If the discretization is fine enough, then the

13



Figure 2. M48 Amplitude Image in Blank Background
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discrete doughnut is itself a reasonable approximation to the

plane at points not too remote from (0,0). The points on the

doughnut usually are identified with the entries in a suitable

two-dimensional matrix. Images on the plane are locally

approximated by functions on this discrete doughnut, and usually

represented in matrix form, two-dimensional integrals are

replaced by doubly-indexed finite sums over two-dimensional

matrix entries, and two-dimensional Fourier transforms are

replaced by two-dimensional finite Fourier series. The latter

are invariably evaluated using the two-dimensional fast Fourier

transform algorithm.

One gross feature of a real correlator is that the input

device is bounded in size. This must be taken into account in

realistic simulations of the Fourier transforming properties of

lenses. An examination of the derivation of the Fourier

transforming properties of lenses shows that the paraxial

assumption and the infinite lens approximation demand that the

image being Fourier transformed certainly be smaller than the

lens size. This elementary fact is quite important and, as will

be seen in the next section, must be taken into account. As

noted in previous paragraphs, all of the training set imagery was

128 x 128 in extent. The input device was modeled to be a 128 x

128 square, though any other shape (rectangular, circula, etc.)

could have been modeled and would have led to similar problems

and successes. To take into account that the input device is

bounded and not the entire plane, the 128 x 1.28 imagery was

inserted into the middle of a larger matrix which modeled the

entire plane, which was always 256 x 256 in size. A square with

an even number of rows and columns has no natural center. It was

assumed that the center (0,0) of the input plane corresponded to

the (129,129) entry of the 256 x 256 matrix. This forced the

(65,65) entry of the 128 x 128 subimage representing the input

device to correspond to (0,0) in the input plane. Similar

precautions were taken in the Fourier plane since any real
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spatial light modulator intercepts only a bounded portion of the

Fourier plane. Namely, the spatial light modulator was assumed

to be a 128 x 128 device which was placed in the low 128 x 128

frequency entries of the 256 x 256 models of the Fourier

transform of the input plane. Thus only relatively low frequency

terms in the Fourier plane were utilized. It is plausible that

this choice made the recognition problem more challenging.

Scaling the spatial light modulator to intercept a larger portion

of the Fourier plane probably would have lead to better target

recognition and discrimination results on the training sets,

though probably at a cost of more instability in the recognition

process for images close to but not included in the training

sets. As mentioned in Section II, an arbitrary decision was made

to set equal to zero'the 11 x 11 box of low frequency pixels in

the spatial light modulator. An optimal choice of which low

frequency pixels to set equal to zero is deferred to another

time.
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SECTION IV

A BASIC DIFFICULTY IN TARGET DISCRIMINATION
FOR PHASE-ONLY FILTERS OF STANDARD DESIGN

A simple but basic difficulty in the standard correlation

process will now be pointed out. The author first noticed this

phenomenon in 1984 - 1985, brought it to public notice in

Reference 20, and gave another talk on it on November 3, 1988.

First, the basic phase-only matched filter construction of Horner

and Gianino will be recalled from Reference 21. Given a single

image f, let 7(h) be the phase-only filter defined by: 7(h)*(k)

= 0 if T(f)(k) = 0 and 7(h)*(k) = T(f)(k)*/17(f)(k)l otherwise.

For the purposes of this study the Horner-Gianino construction

was altered slightly in conformity with the considerations of

Section III. For example, if f is a 128 x 128 image, f was first

embedded into the middle a 256 x 256 array of zeros to obtain a

256 x 256 image f', and a phase-only filter h was defined by:

7(h) (k) = 0 if 7(f')(k) = 0, or if k is inside the 11 x 11 box
of low frequency pixels, or if k is outside the 128 x 128 box of

low frequency pixels, and 7(h) (k) = 7(f')(k) 17(fl)(k)l

otherwise. Here and in future sections, given an image f, the

phase-only filter 7(h) just constructed is termed the phase-only
matched filter associated with f.

Some simple experiments were performed. Let tI be the M48
image in a blank ', 7kground as illustrated in Figure 2 and let

7(hl) be the asso." ..ed phase-6nly matched filter. In a
simulation, t1 was used as the input to an optical correlator

with the phase-only filter 7(hl) in the Fourier plane and the
resulti light intensity distribution i t t plane

was computed. Figure 3 is a graph of the computed maximal light
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Figure 3. t vs. 7(h1 ) , South-to-North Correlation Plane View
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intensities on south-to-north lines over the detector in the

correlation plane. The sharp spike in Figure 3 is at the center

of the detector face, which in turn is centered in the

correlation plane. The horizontal bar at the top of the spike is

a reference level for the threshold of this filter. It will be

used for comparison purposes in the next figure.

The filter 7(h,) did indeed recognize the M48. But it is

rare to have a bright object in a zero intensity background. A

new and more realistic image t2 was designed which consisted of

the image t1 embedded in a uniform background whose amplitude was

equal to the average amplitude of t1. This new image t2 is more

realistic than the image t1. This certainly is the case for

infrared imagery, where objects tend to thermal equilibrium with

their backgrounds. In a simulation, the new image t2 was used as

the input to an optical correlator with the phase-only filter

7(hl) in the Fourier plane and the resulting light intensity

distribution in the correlation plane was computed. Figure 4 is

a graph of the computed maximal light intensities on

south-to-north lines over the detector in the correlation plane.

There is no identification spike at all, for the threshold

(represented by the horizontal bar at the top) to peak signal

ratio is 42.82. This is in marked contrast to the correlation

intensities for the classical (not phase-only) matched filter

and, at first glance, is a bit of a surprise. This phenomenon

holds independent of whether the input device is correctly

modeled to be bounded in extent, as described in Section III, or

whether the input device is incorrectly modeled to cover the

entire input plane. It is true that some sort of edge

enhancement technique probably could have been used to extract an

edge enhanced version of the M48 from its background, but it is

desirable to avoid this extraneous step if possible. There was

no noise in the image t2, so the observed phenomena cannot be

attributed to noise. Large amounts of noise will be added to
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Figure 4. t2 vs. 7(hl) South-to-North Correlation Plane View
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images, similar to t2, considered in later sections, and on these

noisy images edge enhancement techniques probably would be

useless for target identification and discrimination. The

precise reason why this simulation gave its results defies simple

explanation, because such an explanation is equivalent to an

explanation for why the phase-only filtering process gives such"

tremendous discrimination. However, the following is a crude

plausibility argument for the observed result of this last

simulation. First of all, an elementary computation shows that

if z, u, and v are complex numbers, if u is much greater than v

and z = u + v, then the phase of z is close to the phase of u.
ThIs implies that if g is the sum of two functions g, and g2, and

if the g, has a much larger L2 -norm than does g2, then the

spatial frequency content of g is weighted most heavily at those

frequencies where g, is most heavily weighted, and the phases of

2(g) and 7(g,) will be close at those spatial frequencies.

Hence, the associated phase-only matched filters of g and g, will
give close to the same response to the input g. Now the dominant

feature of t2 is not the tank but simply the box. Hence, the

associated phase-only matched filter of t2 will be much more like
that of the box and not that of the tank tl, at least at the most

energetic spatial frequencies of t2. Hence, one would expect the

responses of the associated phase-only matched filters for t1 and

t2 to be quite different, as indeed they are.
.

Another experiment was conducted. Let 7(h2) be the
phase-only matched filter associated to the image t2 . In a

simulation, the image t2 was input to an optical correlator with

the phase-only filter 7(h2 ) in the Fourier plane and the
resulting light intensity distribution in the correlation plane

was computed. Figure 5 is a graph of the computed maximal light

intensities on south-to-north lines over the detector in the

correlation plane. The horizontal bar again is an artificial

construct representing a threshold and will be used for
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Figure 5. t2 vs. 7(h2) , South-to-North Correlation Plane View
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comparison purposes in the next figure. There is an initial

difficulty with the filter 7(h2 ) , for it cannot be translation

invariant, in the sense that if the M48 moves about in the

constant background in the box representing the input device,
.

then the correlation spike given by the filter 7(h2) will not
,

follow its movement. The filter 7 (h2) would track the movement

of the M48 only if the box representing the constant background

moved along with it, which is manifestly not the case. While

this difficulty must be kept in mind, it is not the chief one at

the moment. Consider the simplest of all possible false targets

which might have some chance of confusing 7(h2). Namely, let t3
be the image whose amplitude is constant and is the same as that
of the background of t2. In a simulation, the image t3 was used

as the input to an optical correlator with the phase-only filter

7(h 2) in the Fourier plane and the resulting light intensity

distribution in the correlation plane was computed. Figure 6 is

a graph of the computed maximal light intensities on

south-to-north lines over the detector in the correlation plane.
The horizontal bar again represents the threshold of Figure 5.

The discrimination in this most simple case is unsatisfactory,

for the ratio of the threshold to the peak signal is only 2.32.

A plausibility argument for this very poor discrimination is

easily given and is equivalent to the crude plausibility argument
given previously. What is the overwhelmingly prominent feature

of t2? It is the box filled with the average background, namely

t 3. It is simple to check that if two images are very similar or
close, then their Fourier transforms are close on average, and so

the phases of their Fourier transforms are close on average.
Hence, the phase-only matched filter associated with t2 should be

close to the phase-only matched filter associated with t3.

Therefore the correlation plane light intensity distribution

produced by an optical correlator with the image t2 in the input
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Figure 6. t3 vs. 1(h2) , South-to-North Correlation Plane View
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plane and with Y(h2) in the filter plane should in large measure

be the same as the correlation plane light intensity distribution

produced by the optical correlator with the image t3 in the input

plane and with 7(h2 ) in the filter plane.

This phenomenon apparently has not been reported in the

literature. There may be several explanations for this. First,

in actual equipment demonstrations of optical correlation using

phase-only filters many researchers use a two-state zero-one

input device, so that each pixel in the input device is either

turned on or not. Objects of interest embedded in nontrivial

backgrounds cannot be used as inputs to an optical correlator

with such devices. Second, in published examples of equipment

demonstrations of optical correlation using phase-only filters

which are not limited to two-state inputs, either a nontrivial

background was not present, or, if a background indeed was

present, the demonstration was limited to recognition and not

discrimination. The possible reason that these phenomena were

not discovered in computer simulations can be attributed to

several things. First, perhaps only two-state zero-one input

imagery was used. Secondly, and perhaps more likely, the

correlations were not done correctly in the sense that the input

device was not modeled to be bounded. If the computer modeling

is not done correctly and the constant background is identified

with the entire torus and therefore is not bounded in extent,

then the background effect is not noticed. To see this, take a

constant function c on a two-dimensional discrete torus. The

Fourier transform of c is a constant multiple of the Dirac delta

function at (0,0) in the Fourier transform torus. Then any

phase-only filter whose (0,0) entry is 0 will give no correlation

with the constant background.
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SECTION V

THE OBJECTIVES OF THE PROGRAM

The discussions in Section II and Section IV strongly

suggest the importance of solving the following two problems.
Problem #1: Develop and implement in computer codes

efficient and effective algorithms for phase-only filter design
which fully utilize all of the independent phase parameters.

Problem #2: Use such algorithms to design phase-only filters

whose discretizations reliably extract many aspects of a target
of interest from nontrivial backgrounds in a noise immune and
translation invariant manner while simultaneously discriminating

against false targc;s.
The positive sLiution of these two problems was the major

theme of this work. These two problems in large measure have
been solved.

Concerniig Problem #1, at first glance it might not seem
feasible to directly find an optimal or near optimal set of
phases which maximize ob jective functions such at SNRI(h) or

T1 (h). After all 7(h)* is an L x L array where L typically is
128, 256, or larger, and the number of free parameters involved

in the optimization of SNR1 (h) will be L2 minus the number of low
frequency entries set equal to 0. Such an optimization problem
involves far too many variables to be solved by exhaustive search
or random search methods. Furthermore, SNR1 (h) is

nondifferentiable and so does not possess gradients.
Nonetheless, in the course of this study an efficient and

effective class of iterative algorithms have been devised which,
when carefully implemented into computer codes, give very good
and perhaps even globally optimal solutions. Results based on

the first generation of such algorithms and computer codes were
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reported in References 22 and 23. It suffices to make a crude

guess for the initial point of the iterative process. Such a
guess can be generated by choosing a subset of ff"'" fn and

applying the techniques of Horner and Gianino (References 21 and
24), as modified in a minor way along the lines discussed in

Section IV. These iterative algorithms and computer codes appear

to be relatively insensitive to the choice of initial point, for

near optimal filters were obtained in several numerical

experiments starting from a randomly generated phase-only filter.
An outline of the ideas involved in these iterative algorithms is
given in the Appendix A. If n = m = 1 and a phase-only filter

for the standard correlation architecture is to be constructed,

then these iterative algorithms essentially reproduce the
phase-only matched filter of Horner and Gianino (Reference 21).

However, if m > 1, these iterative algorithms differ radically

from the prescription of Horner and Gianino (Reference 24) and

are necessary for optimal or near optimal filter design
(References 22 and 23). These iterative algorithms and computer

codes are of considerable general utility, for, as will be seen

in later sections, they are also necessary for optimal phase-only
filter design for the new filtering concepts to be introduced in

later sections. A major advantage of these iterative algorithms

and computer codes is that no sets of linear equations need be

solved and no matrix inverses need to be computed once an initial

guess is generated, so that it is feasible to optimize SNR1 (h)
using a very large number of images. Since phase-only filters

are notoriously sensitive to small perturbations in the training

set, this ability to design a filter which can be optimized over
a very large number of images is useful. Simple variants of

these iterative algorithms can be used to drive T1 (h) to a

maximum or N1 (h) to a minimum. In some instances, in pa:. zular

for two of the new filtering concepts to be introduced later,

simply maximizing T1 (h) re "lts in a significant increase in
SNR,(h), for N1 (h) usually undergoes minor oscillations about its
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initial value. This approach gives some control over the

smallest peak signal from true targets. In the two other

filtering concepts discussed later, quite surprisingly, simply

optimizing SNR1 (h) yields a great increase in SNR,(h) while

giving up very little of the size of T1 (h) in the worst case and

usually yielding a significant increase in T1 (h). This is

important, for while it is in general impossible to

simultaneously maximize SNR1 (h) and T1 (h), light budget

considerations imply that one does not want to maximize SNR,(h)

at the expense of driving T1 (h) to a low value. The first

generation of algorithms and computer codes used in this study in

the construction of phase-only filters had extremely long running

times on a VAX 11-785, which frankly was very badly configured

(many users, a low priority, and very limited memory

necessitating a great deal of page faulting and disk I-0).

However, during the course of this ?roject, the efficiency of the

algorithms and codes has progressed steadily and considerably, so

that currently all of the optimization problems described in some

detail later can now probably be solved on the same VAX 11-785 in

several hours of CPU time. The author and others, independently,

estimate that typical running times on a state-of-the art

dedicated workstation would be a half hour or less. Since the

official ending date of this project some versions of the design

codes have been drastically upgraded and rewritten in the

language occam 2. These occam 2 codes have been run on some

quite inexpensive INMOS T800-25 transputer modules installed on

boards in an IBM-AT located in the author's office. The

traasputer and the language occam 2 were designed together.

Programming in occam 2 permits one to carefully optimize code to

run on transputers. Initial test runs indicate that two to five

minutes suffice for the design of good phase-only filters in this

new computing environment. INMOS also claims that transputer

modules will be available early in 1991 which have five to 10

times the floating point processing power of the T800-25
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(Reference 25). Thus one does not need a supercomputer for the

approach to phase-only filter design advocated in this report.

Objections to the methods of phase-only filter design advocated

in this report which claim that such methods are too

computationally intensive to be useful thus seem irrelevant and

groundless. Such is true in view of the availability of

inexpensive current hardware, the speed at which the design codes

appear to run on these current inexpensive devices, and the

potential availability of much more powerful inexpensive hardware

in the near future. After all, it is the performance of the

filters which is most important, not that they were designed

using only a VAX 11-785, or a PC-XT, or a TI-30 pocket

calculator, or an abacus, or a slide rule, or just pencil and

paper.

Concerning Problem #2, it was pointed out in Section IV that

the average background amplitude level in which a target might be

embedded must be considered when designing phase-only filters.

It seems inescapable that different filters are needed when the

same target is embedded in different amplitude backgrounids. The

number of filters needed to extract a particular target from the

spectrum of all possible reasonable backgrounds is not addressed

in this work. Rather this study concentrated on the case for

which there was the least contrast, for this seemed to be the

most challenging case. Very simple estimates prove that the

correlation plane response of T(h), and therefore SNR1 (h),

varies continuously if the background into which an input image

is embedded varies smoothly. Preliminary work has shown that the

filters to be described in this study are quite robust over a

fairly wide range of backgrounds centered around the average
amplitude of the target training sets. Some degradation of

performance is noted as the size of the training sets is

increased. A thorough study of questions in this area need to

conducted in a systematic manner.
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The basic philosophy or intuitive idea adopted in this study

in attempts to solve Problem #2 is the following: most of the

important information in an image is contained in its variations

from its average amplitude. This intuitive idea is discussed at

length in References 26 - 28. The idea behind this solution

philosophy can be expressed mathematically as follows. Let f be

an image which vanishes outside of an aperture A, let XA he the

indicator function of A (XA(x) = 1 if x E A, XA(x) = 0 if x g A),

and let E(f) be the expectation of f or the average of f over A.

It is elementary that f = E(f)xA + (f - E(f)XA) and E(f- E(f)XA)

= 0. The summand f - E(f)XA contains most of the important

information content of f for purposes of recognition and

discrimination. It also is relatively insensitive to changes in

the background. Rather than use f, f - E(f)xA should be used.

Somehow, either mathematically, algorithmically, or

architecturally, when confronted with the image f seen through

the aperture A, 4 good target recognition and discrimination

system should subtract the average amplitude E(f)xA from f.

The first rather naive implementation of this idea was to

make phase-only filters by the method of Horner and Gianino

(Reference 24), as slightly modified along the lines discussed in

Section IV, using the training set images fi - E(fi)XA

(1 < i < m) and not the training set images fi (1 < i < m). This

change led to some improvement in filter performance, but it

failed to give a good solution even in the very special case for

which n = m = 1. For example, let h3 be the discriminant*

function such that Y(h3 ) is the phase-only matched filter

associated with the image t2 - E(t2)XA. Here t2 is the M48 image

of Figure 2 in a background in a square aperture, as discussed in

Section IV. In a simulation, the image t2 was used as the input

to an optical correlator with the phase-only filter T(h3) in the

Foarier plane and the resulting light intensity distribution in

the correlation plane was computed. Figure 7 is a graph of the
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Figure 7. t2 vs. T(h3) , South-to-North Correlation Plane View
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computed maximal light intensities on south-to-north lines over

the detector in the correlation plane. The horizontal bar at the

top, as usual, is an artificial construct representing a

threshold and will be used for comparison purposes in the next

figure. The filter 7(h3 ) definitely recognized the target t2.

Next, as in Section IV, let t3 be the simplest false target,

namely let t3 be the image whose amplitude is constant and is the

same as that of the background for t2. Another simulation was

performed, the image t3 was used as the input to an optical

correlator with 7(h3) in the Fourier plane, the corresponding

light intensity distribution in the correlation plane was

computed, and the maximal light intensities along south-to-north

lines over the detector was displayed in Figure 8. A comparison

of Figure 8 with Figure 6 shows that the use of the filter 7(h3)

instead of the filter 7(h2) led to some improvement in

discrimination of t2 from t3, for in Figure 8 the threshold to

peak signal level has improved to 5.6 for t3 versus 7(h3)

whereas in Figure 6 the threshold to peak signal level for t3

versus 7(h2) was 2.32. There is some improvement in filter

performance, but the improvement is not dramatic enough to give

hope that this simple modification of the method of Homer and

Gianino can be extended to very large training sets. Four

different techniques for drastic improvements in filter

performance are given in the next four sections.
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Figure 8. t3 vs. 7(h3) , South-to-North Correlation Plane View
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SECTION VI

THE FIRST SOLUTION: PROPER FILTER DESIGN

The first solution to Problem #2 raised in Section V is

totally straightforward. Namely, using the notation introduced
in Section II, given a set of true targets gl,..., gn in a blank

background (such as a subset of the second series of 61 T62
amplitude images discussed in Section III), compute their average

nonzero pixel value C, place each target image gi in a square

aperture with C as the constant background amplitude to obtain a
new true target image fi' let m = n + 1, and set fn+1 to be the
false target image which is just the square aperture with C as

the constant background amplitude. Then starting with the
phase-only filter discussed at the end of Section V for the

training set fl,"... fn' fn+1' use the algorithms discussed in
Section V and Appendix A to construct a discriminant function h

so that 7(h) is a phase-only filter with SNR 1 (h) optimized as
best as possible. Do this optimization carefully as discussed in

Section III.
Notice that by suppressing the peak signal off fn+1 not only

has there been an improvement in the ability of the phase-only

filter 7(h) to discriminate against fn+i' but also the

performance of 7(h) has been made much more robust with respect

to translations of any gi (I < i < n), as long as the image gi
stays wholly within the field of view in the constant amplitude

background C. To see this, note that sliding gi around inside
the aperture with a constant amplitude background of C is
precisely the same as sliding fi - CXA around inside the aperture

with a constant amplitude background of C. More precisely, let T

be any rigid translation so that T(gi) lies wholly inside the

aperture. If the background in which gi resides has a constant
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amplitude of C, then the new image in the aperture coincides with

T(fi - CXA) + CXA.

But

I<T(f i - CXA) + CXA],T(h)>I 2

= <Tf - CXA),T(h)>12 + 21te(<T(f i - CXA)7T(h)>'<CXAT(h)>)

+ C2 I<XA,T(h)>I

= (<(f. - CX~hl2 + 2Re(<(fi - CXA),h>-<CXA,T(h)>)

+ 02 1XAT(h)>1 2

since T preserves inner products, and

I<f1,h>1 2

= ViI(f1 - CXA) + CXA] ,h>12

= 1<f i- CXA),h>I + 2Re(<(f 1 - CxA),h>'<CXA,h>) + 02 1(XA,h>l2

Hence,

11<T -- OKCA) + CXA],T(h)>1 2 _ <fi,h>I 2 1

=12Re(<(f~ - CXA),h>'<CXAT(h)>) + C 2 1<XAT(h)>I 2

- 2Re(<(fi - CXA),h>.<CXA,h>) _ C2 1 xA~h> 2 1
21c<(f i - CXA),h>H I<CXAT(h)>l + 2J<(fi - CxA),h>LkICXA,h>I

+ I<CXAT(h)>j 2 + I<CxA,h>1 2

2 jIfih>I.I<CXAT(h)>l + 2 1<CxA,h>I'1(CXAT(h)>l

" 21<fi~h> I.I<CXA,h>I + 21<CXAgh>l 2 + I<CXA,T(h)>l 2

" I<CXA,h>12

Next, divide this string of inequalities by Ifih>1 2 to obtain

If[T(f i - CXA) + CXA],T(h)> 2 /lfi'h>J 2} - 11I
< 2( ICXAT(h)>I/I<fi,h>I)

+ 2{( (<CXA h>I/I<fi,h>l) '(I<CXAT(h)>I/Icfi,h>l)

+ 2 (I<CXAh>I/lfi'h>j) + 2(Ic<CXA,h>I/Icfi~h>I)2

+ (I<CXA,T(h)>[I<fi,h>I) 2 +(<X~>/~ih14

Let R = 1/SQRtT(SNR,(h)). Then
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I{t<[T(fi - OXA) + CXA],T(h)>12/ 1%fi,h>l2} - 11

< 2R + 2R2 + 2R + 2R2 + R2 + R2

= 2R(2 + 3R).
Thus, the ratio

I<[T(fi - CXA) + CXA] ,T(h)>12/I<fi,h>l 2

can be driven close to one by driving SNRj(h) to a high level.

In other words, the larger SNRI(h) is made, the more translation

invariant is the optical correlation process. This statement is

true under the assumption that C is fixed. A perturbation of the

above argument gives simple but crude estimates of the

translation invariance of the optical correlation process when

both C and T vary independently and, of course, shows continuity

in both parameters. The bounds which one derives to prove these

statements probably are not particularly sharp. Empirical

evidence gathered from the rather large imagery used in this

study suggests that the optical correlation process using

phase-only filters of this study's design probably is much more

translation invariant than these simple but crude bounds suggest.

This supposition needs careful checking.

Tests of the scheme proposed in the first paragraph of this

section have been carried out on a variety of subsets of the

second series 61 T62 images discussed in Section III. Some of

these results are presented in Table 1 - Table 5. During the

course of these calculations the filters were purposely optimized

so that the recognition spike for each true target occurred at

(0,0) in the correlation plane, each phase-only filter had its

low 11 x 11 frequency terms set equal to 0, each of Ri

(1 < i < n + 1) was chosen to be the correlation plane or,

perhaps more interestingly, was chosen to coincide with the

detector face, Bi = Ri (1 < i < n), and Bn+1 =

Table 1 shows the performance rating for various continuous

phase-only filters before and after optimization via the

iterative design techniques of this study. In this table the
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TABLE 1. SNR1 FOR PHASE-ONLY FILTERS MADE FROM SUBSETS OF THE

61 T62 IMAGES, OPTIMIZED OVER THE ENTIRE CORRELATION
PLANE

Number of Tanks SNR1 Initial Filter SNR1 Optimal Filter

1 71268.56/19982.37 110779.0/1779.360

= 3.566572 = 62.25776

37 11269.12/22391.76 24373.51/1648.890

= 0.5032709 = 14.78177

41 8821.926/21648.14 22668.08/1682.985

= 0.4075142 = 13.46898

45 5010.160/20405.42 21424.40/1738.687

= 0.2455309 = 12.32217

49 4944.087/19661.24 19747.55/1634.902

= 0.2514637 = 12.07874

53 4087.492/20220.60 19380.76/1559.984

= 0.2021449 = 12.42369

57 4090.192/21021.73 19125.26/1699.251

='0.1945697 = 11.25511

61 5640.813/21439.39 18251.88/1675.026

= 0.2631054 = 10.89647
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TABLE 2. SNR 1 FOR PHASE-ONLY FILTERS MADE FROM SUBSETS OF THE

61 T62 IMAGES, OPTIMIZED OVER THE DETECTOR FACE

Number of Tanks SNR1 Initial Filter SNR1 Optimal Filter

1 71268.56/19982.37 87470.72/228.2725

= 3.566572 = 383.1855

5 46572.79/19619.90 62066.14/263.6993

= 2.371203 = 262.2152

9 32132.33/16839.45 44300.57/362.0043

= 1.908158 = 122.3758

13 25778.24/16752.72 32797.94/270.5114

= 1.538750 = 121.2442

17 17080.28/17463.89 27203.71/270.0250

= 0.9780338 = 100.7452

21 13256.70/16731.74 21924.45/253.7263

= 0.7923086 = 86.40987

25 10639.40/18885.06 19875.38/256.5071

= 0.5633767 = 77.48471

29 11132.16/20728.79 18490.65/225.5611

= 0.5370384 = 81.97627

33 9865.263/22054.50 17805.41/284.2386

= 0.4473129 = 62.64246
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TABLE 2. SNR1 FOR PHASE-ONLY FILTERS MADE FROM SUBSETS OF THE

61 T62 IMAGES, OPTIMIZED OVER THE DETECTOR FACE
(CONCLUDED)

Number of Tanks SNR I Initial Filter SNR I Optimal Filter

37 11269.12/22391.76 16462.35/217.5071
•= 0.5032709 = 75.68647

41 8821.926/21648.14 15170.02/240.6803

= 0.4075142 = 63.02972

45 5010.160/20405.42 14085.55/250.8399

= 0.2455309 = 56.15355

49 4944.087/19661.24 13078.30/225.5571

= 0.2514637 = 57.98221

53 4087.492/20220.60 12600.86/222.1102

= 0.2021449 = 56.73247

57 4090.192/21021.73 12373.76/235.2423

= 0.1945697 = 52.59580

61 5640.813/21439.39 11674.34/242.0804

= 0.2631054 = 48.73109
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TABLE 3. PEAK SIGNALS OFF THE 61 T62 IMAGES GIVEN BY THE
PHASE-ONLY FILTER LISTED IN TABLE 2 WITH THESE
IMAGES AS THE TRAINING SET

T62 Image Signal Intensity at (0,0) in the

Correlation Plane

1 16916.76

2 15170.15

3 13452.24
4 11787.68

5 11698.94

6 12537.65
7 14182.69

8 12544.26
9 12237.69

10 12658.64

11 12227.11

12 11733.69

13 13207.46

14 13614.12
15 14852.85

16 13519.06

17 14907.09

18 14528.01

19 15235.75

20 14993.74

21 12383.46

22 13973.41

23 15186.59

24 13194.58

25 12686.87
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TABLE 3. PEAK SIGNALS OFF THE 61 T62 IMAGES GIVEN BY THE
PHASE-ONLY FILTER LISTED IN TABLE 2 WITH THESE
IMAGES AS THE TRAINING SET (CONTINUED)

T62 Image Signal Intensity at (0,0) in the

Correlation Plane

26 14960.36

27 14099.18

28 11925.42

29 12239.57
30 11925.88

31 12869.59

32 13793.01
33 1' 67.13

34 1917.15

35 13178.68

36 12966.50

37 11747.31

38 12610.26

39 14202.35

40 12589.57

41 12779.90

42 15669.91

43 13808.50

44 13357.23
45 13579.48

46 17786.11

47 14196.47

48 11763.91
49 13652.38

50 12722.38
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TABLE 3. PEAK SIGNALS OFF THE 61 T62 IMAGES GIVEN BY THE
PHASE-ONLY FILTER LISTED IN TABLE 2 WITH THESE
IMAGES AS THE TRAINING SET (CONCLUDED)

T62 Image Signal Intensity at (0,0) in the

Correlation Plane

51 12343.76

52 12088.06

53 11674.34

54 12356.88

55 11794.07

56 12338.33

57 15049.25

58 12134.26

59 13696.92

60 13710.62

61 15459.23
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TABLE 4. SNR1 FOR THE OPTIMIZED BINARY PHASE-ONLY FILTERS MADE
FROM OPTIMIZED PHASE-ONLY FILTERS SELECTED FROM TABLE I
AND TABLE 2

Number of Tanks SNR1 Optimized Binary Phase-only Filter

1 58647.23/3826.177 = 15.24819

21 12300.36/3850.205 = 3.194728

41 13865.34/3621.077 = 3.829066

53 10080.72/3449.044 = 2.922759

57 10792.47/3397.299 = 3.176779

61 11501.86/3231.800 = 3.558964
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TABLE 5. SNR1 FOR THE OPTIMIZED 16-STATE PHASE-ONLY FILTERS MADE

FROM OPTIMIZED PHASE-ONLY FILTERS SELECTED FROM TABLE 1

Number of Tanks SNR1 Optimized 16-State Phase-only Filter

1 85631.95/368.2507 = 232.5371

21 21734.90/415.3951 = 52.3244

41 14766.46/389.8145 = 37.88073

53 13397.48/372.1299 = 36.0215

57 12698.56/415.6658 = 30.54992

61 11864.56/389.5699 = 30.45554
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filters were designed by choosing each Ri (1 < i < n + 1), in

particular Rn+1, equal to the entire correlation plane in the
optimization process. Each training set consisted of an odd

number, 2k + 1 say, of the T62 images, the flush side view plus
and minus k degrees at one degree increments. The initial filter

was always taken to be that made from all 2k + 1 images in the

training set by the method of Horner and Gianino (Reference 24),
as trivially modified along the lines suggested in Section IV.
SNR1 (h) for each filter h is given as the quotient of two numbers
which are the values of T1 (h) and N1 (h) in the units being used.
The actual values of the numerator and denominator in each case

are not particularly important since they are subject to drastic
scaling in a real device, but the ratios of the various
numerators and the various denominators indicate how T1(h) and
Nl(h) vary relative to one another as the number of training set
images is changed. Two things are noteworthy. First, the
optimization process of this study led to a 30- to 40-fold

increase in SNR1 (h). Secondly, this increase in SNR1 (h) was nol
accompanied by a decrease in the threshold T1 (h), which
invariably increased after optimization by a factor of three or
four when the training set became large.

Table 2 is similar to Table 1 but contains data for a larger

collection of training sets. Furthermore, in this table the
filters were designed by choosing each Ri (1 < i < n + 1),

especially R n+1, to be the detector face in the correlation
plane. Again, the training set imagery used consisted of subsets
of the second series of 61 T62 side images discussed in detail in

Section III, each subset consisted of an odd number, 2k + 1 say,
of the T62 images, the flush side view plus and minus k degrees
at 1 degree increments, and the initial filter was always taken
to be that made from all 2k + 1 images in the training set by the

method of }[orner and Gianino (Reference 24', as trivially
modified along the lines suggested in Section IV. In every
instance SNR1 (h) increased approximately two orders of magnitude
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after optimization while the threshold Tj(h) never decreased and

most often increased significantly. There are a few anomalies in

Table 2. Notice that SNR1 for a filter made from 29 images is

greater than that made from 25. This is a reflection of the fact

that the algorithms of this study drive SNRI(h) to a local and

not necessarily a global optimum. Notice however, that this was

done at a cost decreasing the threshold Tl(h). A similar anomaly

exists between the optimized filters and thresholds for 33 and 37

images, and for 45 and 49 images. Notice that as the size of the

training set decreased, the threshold monotonely decreased.

There is evidence to believe that the most current versions of

the phase-only filter design algorithms are better at finding

global optima than the versions used to calculate Table 2. These

anomalies probably would not occur if the optimizations were

carried out using them. This assertion should be checked.

Table 3 illustrates the relative stability of the

recognition signal coming off each of the 61 T62 images given by

that optimized phase-only filter listed in Table 2 which had the

61 T62 images as part of its training set.

Table 4 contains the results of the one-dimensional

optimization process described in Section II used to binarize

selected optimized continuous phase-only filters from Table 2.

These results are mildly disappointing. Table 5 contains the

results of the one-dimensional optimization process described in

Section II to discretize selected optimized continuo,, phase-only

filters from Table 2 into 16 states. These results are much more

pleasant. It is an interesting question as to why there is the

large difference in performance between 2-state and 16-state

filters. No satisfactory answer is known except to point to the

details of the correlation process itself as used for

discrimination. Binary filters seem to play a useful role in

target recognition and even in discrimination when the image

which is the false target is very unlike the training set images

(see References 22 and 23). However, a two-state filter seems to
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be inadequate for picking out relative low energy differences

between two images whose most energetic spatial frequencies are

very much alike, even when the very lowest frequency terms are

suppressed, as they are here. The discussion of Section II

implies that the target discrimination process using phase-only

filters boils down to the following problem. Given a large

number M of finite sequences of complex numbers of some fixed

length k { a(ij) (1 i k) 1 j M }, choose a fixed
finite sequence of k complex numbers of modulus one, z(1),...,

z(k), so that

max I z(i)a(i,j)12

< j < M 1 i <k

is as small as possible. It is clear that the more constraints

which are put on the choice of the z(i)'s, the larger this

minimum must be in general. Table 4 suggests that for the

problem at hand constraining the z(i)'s to be +1 or -1 is too

restrictive to give a good solution to this minimax question, but

that constraining the z(i)'s to be chosen from the 16th roots of

unity is not excessively restrictive. It is possible that a bad

choice has been made for some of the gross parameters involved in

filter design for binary phase-only filters to play a useful

role. For example, rescaling the filter to intercept a larger or

smaller portion of the Fourier plane, or suppressing a larger

portion of the low frequency terms in the filter plane, or

implementing a variant and/or splicing of the ideas of Flannery

et al. and/or the ideas of this study might give phase-only

filters which binarize in an acceptable manner for these large

training sets. These options should be investigated. In any

case, the data presented in Tables 4 and 5 certainly suggest the

vast superiority of 16-state phase-only filters over binary

phase-only filters, for they yield a 10-fold or more increase in

SNR1 and in the size of useful training sets while requi.ring only

four times the storage requirements. This conclusion tentatively
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holds for the sort of optical correlation system discussed in

this section. However, it will be shown that binary phase-only

filters can still play a useful role for the syscems described in

Sections VII and VIII and especially for the filtering scheme

described in Section IX.

It is of interest to test how well these 16-state

discretized filters wo. k T+ -4 4- U_ +U- -91-U _... .T AO

in an aperture in a background whose amplitude is the same as the

average amplitude of nonzero pixels of the original 61 T62 images

in the second series of images. The image t4 is displayed in

Figure 9. Let F(h4) be the optimized 16-state discretized

filter made from the 61 T62 images in an aperture in a background

whose amplitude is constant and equal to the average nonzero

amplitude on the 61 T62 images. SNRI(h 4 ) is listed in Table 5.

An experiment was conducted. In a simulation, the image t4 was

used as the input to an optical correlator with the phase-only

filter 7(h4 ) in the Fourier plane and the resulting light

intensity distribution in the correlation plane was computed.

Figure 10 is a graph of the computed maximal light intensities on

south-to-north lines over the detector in the correlation plane.

The horizontal bar, as usual is an artifact representing Tl(h 4)

and will be used for comparison purposes in some of the next few

figures. Let t5 be the simple false target which consists of the

aperture filled with a constant background whose amplitude is the

same as the average amplitude of the nonzero pixels of the

original 61 T62 training set images. In a simulation, the image

t5 was used as the input to an optical correlator with the filter

7(h 4) in the Fourier plane and the resulting light intensity

distribution in the correlation plane was computed. Figure 11 is

a graph of the maximal light intensities along south-to-north

lines over the detector in the correlation plane. The threshold

to peak signal ratio is 30.46. Thus 7(h4 ) performs rather well
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Figure 9. T62 Amplitude Image in a Nontrivial Constant

Amplitude Background as Seen Through an Aperture
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Figure 10. t4 vs. (h4 ) , South-to-North Correlation Plane View
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Figure 11. t vs. 7(h4) , South-to-North Correlation Plane View
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in this discrimination test for which it has been designed. It

is of interest to test the performance of 7(h4 ) against false

targets which are not in the training set but which are vaguely

similar to the T62 training set images. Let t6 be the flush side

view of an M1 in an aperture in a background whose amplitude is

the same as the average amplitude of the nonzero pixels of the

original 61 T62 images. The image t6, taken from the second

series of M1 imagery, is displayed in Figure 12. In a

simulation, the image t6 was used as the >qput to an optical

correlator with the filter 1(h4) in the Fourier plane and the

resulting light intensity distribution in the correlation plane

was computed. Figure 13 is a graph of the resulting maximal

light intensities along south-to-north lines over the detector in

the correlation plane. The threshold to peak signal ratio is

5.94. This is typical of the performance of 7(h4 ) versus any of

the M1 side images. Recall that this discrimination performance

is achieved with no knowledge of the M1 images being used in the

design of 7(h4 )*. It is of interest to test the performance of

7(h4 ) against the training set images when they are buried in

noise. Let t7 be the image displayed in Figure 14. This image

t7 is the same as t4 except that Gaussian noise with A = 0.0 and

= 25.0 has been independently added to each pixel. In a

simulation, the image t7 was used as the input to an optical

correlator with the filter 7(h4) in the Fourier plane and the

resulting light intensity distribution in the correlation plane

was computed. Figure 15 is a graph of the resulting maximal

light intensities along south-to-north lines over the detector in

the correlation plane. Target recognition is certainly achieved

in spite of the noise. This is typical for the performance of

7(h4) against any of the T62 training set images with the same

amount of noise added.
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Figure 12. M1 Amplitude Image in a Nontrivial Constant

Amplitude Background as Seen Through an Aperture
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Figure 13. t6 vs. 7(h4) , South-to-North Correlation Plane View
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Figure 14. The T62 Image of Figure 9 Buried in u = 0.0,

= 25.0 Additive Gaussian Noise
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*4

Figure 15. t7 vs. T(h4 ) , South-to-North Correlation Plane View
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SECTION VII

THE SECOND SOUTION: CODING INTENSITY IMAGES AS PHASE-ONLY
IMAGES FOR OPICAL CORRELATOR INPUT PLUS PROPER FILTER
DESIGN

The results of this section are of necessity quite
preliminary since the ideas involved only occurred to the AFATL
Program Manager and the author in a recent telephone
conversation. Suppose a detector registers an intensity image

[apq 2] (apq > 0, 1 < p, q N) on its active pixels. In the

standard optical correlator architecture and algorithm the
amplitude image [apq] is then used as the input to the

correlator. There is no mathematical reason why [apq] should be

used as the input to the correlator. It might be advantageous to

input some other image [b pq] which is a function of [apq 2] to the

correlator, so long as there is a one-to-one correspondence

[apq 2] -4 [bpq] between che detected image and the inputs. After

all, there is a definite but subtle difference between the actual

measured pixel values apq2 and the information content they

convey. If the measured intensity image [apq2] contains an

object of interest, then the correspondence [apq 2]  [b pq] should

commute with translations of the object of interest inside the
aperture represented by the matrix of detected intensities. This
can be the case in general only if there is a function o : [0,+w>

-4 C'so that bpq = (apq2 ). Here C1 is the set of complex

numbers. This rule [apq 2] -4 [v(apq 2)] can be one-to-one in

general only if 9 is one-to-one, as least on the set of possible
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measured intensities apq2  There is a wide body of folklore

which states that amplitudes do not contain much information and
are quite troublesome, but that phases do contain a great deal of

information, for signals in general and for Fourier transforms of

imagery in particular (Reference 29). This philosophy is

suggestive but does not strictly apply here, for translation does

not commute with the Fourier transform operator. Proceeding in a

quite simple-minded fashion, however, this philosophy suggests

taking 9 to be a complex exponential. In the particular case at
hand the intensities are circumscribed to be the integers between

0 and 255. This suggests letting bpq = (a pq2) =

exp(a pq ri/255.0). Here apq2 is divided by 255.0 and then

multiply by r so that a pq2 r/255.0 ranges between 0 and r. We do

this so that apq 2 -4(a pq2) is one-to-one and so that 9(0) and

V(255) are as far apart as possible. It is easy to think of more

general functions 9 which have similar properties. Note that in

the case at hand V(aij 2 ) always will be a complex number of

modulus one lying in the first or second quadrants of the complex

plane.

There are devices described in the literature which might be

used to input an arbitrary array of phases lying in the first or

second quadrant of the complex plane to an optical correlator.

For example, a reading of Reference 30 shows that the Hughes

liquid crystal light valve can be used in such a mode. One may

glean from Reference 31 that one can even use an inexpensive

liquid crystal television for this purpose. It is somewhat

ironic that the authors of Reference 31 were trying to operate

their liquid crystal television as a full continuous phase

spatial light modulator and appear to be somewhat vexed that they

could only achieve a continuous phase response for phases lying
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in the first and second quadrants.

It is of interest to test if there is an advantage to using

phase-only inputs instead of the usual amplitude inputs to an

optical correlator. A few of the numerical experiments described

in Section VI were repeated to test if there might indeed be some

advantage in their use. In these calculations intensity images

coded as phase-only images, as described in the previous

paragraph, were used as the inputs to a simulated optical

correlator rather than the usual amplitude input images used in

Section VI. The results are described in Table 6 - Table 11.
These results, while very preliminary, are quite encouraging for

this new approach to optical correlation since they appear to

consistently produce results which are over four times that

produced by the standard techniques. Let 2(h5) be the 16-state

phase-only filter listed in Table 11 made from the optimized

continuous phase-only filter whose training set included the 61
T62 side images, coded as phase-only inputs. In a simulation,

the T62 image t4 was coded into a phase-only image and used as*

the input to an optical correlator with the filter 2(h5) in the
Fourier plane and the resulting intensity distribution in the

correlation plane was computed. Figure 16 is a graph of the

resulting maximal light intensities along south-to-north lines

over the detector in the correlation plane. There is excellent

recognition. The horizontal bar as usual is an artifact

representing T,(h 5) and will be used for comparison purposes in

the next few figures. Next, the simple false target image t5
described in Section VI was coded into a phase-only image by the

technique of this section. The previous numerical experiment was

repeated with t5 in place of t4. The results are displayed in
Figure 17, which indicate excellent discrimination. These last
two results are to be expected from the statistics listed in

Table 11. It is of interest to test the performance of 7(h5)
against false targets for which it has no knowledge but which are
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TABLE 6. SNR1 FOR PHASE-ONLY FILTERS MADE FOR PHASE-ONLY INPUTS

FROM SUBSETS OF THE 61 T62 IMAGES, OPTIMIZED OVER THE
ENTIRE CORRELATION PLANE

Number of Tanks SNR1 Initial Filter SNR1 Optimal Filter

1 10.69354/0.4961187 11.25012/0.043723952

= 21.55441 = 257.2989

61 0.9933575/0.5285769 1.652262/0.042049207

= 1.879306 = 39.29354
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TABLE 7. SNR 1 FOR PHASE-ONLY FILTERS MADE FOR PHASE-ONLY INPUTS

FROM SUBSETS OF THE 61 T62 IMAGES, OPTIMIZED OVER THE
DETECTOR FACE

Number of Tanks SNR 1 Initial Filter SNR1 Optimal Filter

1 10.69354/0.4961187 9.914534/0.006309473

= 21.55441 = 1571.372

61 0.9933575/0.5285769 1.421531/0.006232505

= 1.879306 = 228.0834
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TABLE 8. SNR1 FOR THE OPTIMIZED BINARY PHASE-ONLY FILTERS MADE

FROM THE OPTIMIZED PHASE-ONLY FILTERS LISTED IN TABLE 6

Number of Tanks SNR 1 Optimized Binary Phase-only Filter

1 4.652245/0.090415299 = 51.45418

61 0.8168633/0.098034866 = 8.332376
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TABLE 9. SNR1 FOR THE OPTIMIZED BINARY PHASE-ONLY FILTERS MADE

FROM THE OPTIMIZED PHASE-ONLY FILTERS LISTED IN
TABLE 7

Number of Tanks SNR1 Optimized Binary Phase-Only Filter

1 4.675542/0.086300857 = 54.17723

61 0.6682624/0.1011532 = 6.606438
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TABLE 10. SNR1 FOR THE OPTIMIZED 16-STATE PHASE-ONLY FILTERS

MADE FROM THE OPTIMIZED PHASE-ONLY FILTERS LISTED IN
TABLE 6

Number of Tanks SNR1 Optimized 16-State Phase-Only Filter

1 11.11173/0.053745653 = 206.7466

61 1.515951/0.05311-4632 = 28.51963
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TABLE 11. SNR1 FOR THE OPTIMIZED 16-STATE PHASE-ONLY FILTERS

MADE FROM THE OPTIMIZED PHASE-ONLY FILTERS LISTED IN
TABLE 7

Number of Tanks SNR 1 Optimized 16-State Phase-Only Filter

1 9.839813/0.0098521933 = 998.7434

61 1.139705/0.010111701 = 112.7115

65



Figure 16. t4 vs. 7(h5) , South-to-North Correlation Plane View
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Figure 17. t5 vs. T(h5) , South-to-North Correlation Plane View
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vaguely similar to the T62 training set images. To make an

initial test of this, code the M1 image t6 described in Section

VI into a phase-only image, repeat the previous experiments with

t6 in place of t4 , and display the results in Figure 18. There

is quite adequate discrimination. A worrisome aspect of this

coding of intensity images as phase-only images is that additive

noise on the original intensity image is turned into

multiplicative noise. How does this new filtering process behave

with respect to additive noise on the original amplitude image?

To check this, repeat the simulations just discussed with the

image t7 described in Section VI in place of t4 and display the

results in Figure 19. This figure shows that even a great deal

of multiplicative noise did not prevent the phase-only filter

(hs5) from recognizing the T62. This is quite gratifying and a

bit of a surprise.

Coding intensity images as phase-only images for optical

correlator input also seems to work well with small infrared

targets of strategic interest. Figure 20 shows a blowup of such

a target. Its approximate length is 16 pixels and is presented

in a 32 x 32 blank background. Let t8 be the 32 x 32 image

consisting of the target of strategic interest shown in Figure 20

in a uniform background whose intensity is equal to the average

intensity on the target. Let T(h6) be the continuous phase-only

filter optimally designed for the training set consisting simply

of t8 as the one true target and a nonzero uniform background as

the one false target, optimized over the entire correlation

plane. The simulations discussed above were repeated with the

image t8 coded into a phase-only input and with 7(h6 ) in the

filter plane. The resulting south-to-north view of the entire

correlation plane is displayed in Figure 21. The filter

certainly recognizes the target in spite of the background. This

experiment was then repeated with the constant background as

input. The ratio of the threshold (the height of the peak signal
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Figure 18. t6 vs. 1(h5), South-to-North Correlation Plane View
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Figure 19. t7 vs. T(h5 ) , South-to-North Correlation Plane View
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Figure 20. An Infrared Image of a Strategic Target in a Blank

Back ground
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Figure 21. t8 vs. T(h6 ) , South-to-North Correlation Plane View
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in Figure 21) to the peak signal over the entire correlation

plane was 91.43726. This simple example shows the power of the

iterative design techniques advocated here, for the corresponding

ratio for the phase-only matched filter made from the phase-coded

version of t8 is 0.048271649. This phase-only matched filter was
.

the starting point for the iterative design code for T(h6 ) If
the filter had been optimized over the detector instead of over

the entire correlation plane and this last experiment repeated,

then the ratio of the threshold to the peak signal over the

detector in the correlation plane would be 1072.659.
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SECTION VIII

THE THIRD SOLUTION: AN ARCHITECTURE MODIFICATION PLUS PROPER
FILTER DESIGN

In this section a perturbation of the standard optical

correlator algorithm is discussed which solves Problem #2 of

Section V. This algorithm can be implemented in an all-optical

system, though at a cost of making the optics more cumbersome

than the standard architecture. The ideas of this section are

quite intuitive bearing in mind the discussion at the end of
Section V. The ideas discussed here are a slight refinement of

those previously discussed in Reference 20.
The following is the sequence of operations or algorithm to

be performed in carrying out what will be called the all-optical

solution to Problem #2 of Section V:

(i) input the coherent image f and measure IE(f) I;
(ii) take the Fourier transform 7(f);

(iii) input the coherent image E(f)XA and take the Fourier

transform 7(E(f)XA) ;

(iv) perform the image subtraction 7(f) - 7(IE(f)IXA) =

7(f - IE(f)IxA);
(v) use the spatial light modulator to multiply 7(f - IE(f)IXA)

by the filter T(h)
(vi) take the inverse Fourier transform of this product to

produce the intensity 1<(f - JE(')IXA),hx>l2 at each point x

of the correlation plane.

IE(f)l is used here rather than E(f) since E(f) need not in
general be positive, but in fact may be complex valued (Reference
32. g .ure 22 is a schematic of a possible equipment
implementation of this algorithm. The next section discusses an
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BS1, BS2 = Beam Splitter
CP = Correlation (Output) Plane
DE = Detector Element
FP = Fourier (Filter) Plane
HWR = Half Wave Retarder
IP1 = Input Plane with Square Aperture
IP2 = Image Input Plane
IVD = Intensity Varying Device
L1, L2 = Collimating Lens
L3, L4 = Fourier Transforming Lens
M1, M2, M3, M4 = Mirror
S = Source

Figure 22. A Schematic for a Possible Equipment Implementation of the All-Optical Algorithm
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efficient way to measure IE(f)l with a minor perturbation to the
correlator architecture. There are some possible drawbacks to
this algorithm. For example, it is difficult to conceive of an

equipment implementation for this algorithm which does not use

two input devices (though the currently fashionable joint

transform correlator apparently suffers from the same defect).

More importantly, a delicate optical subtraction needs to be

performed.

This algorithm for the solution of Problem #2 of Section V

requires a new measure of performance for the discriminant

function h. In this new context define the signal-to-noise ratio

SNR2 (h) of h to be

SNR2 (h) = T2 (h)/N 2 (h) (4)

where T2 (h), the threshold of h, is defined to be

T2 (h) = min max 1<(fi - IE(fi) IXA),hx>1 2  (5)
< i < n xe B. X

and where N2 (h), the noise of h, is defined to be

N 2(h)  max max <(fi - IE(fi)IXA),hx>1 2 . (6)

1h < i < m X CRi - Bi

In these formulas the fi's, Ri's, and the Bi's are as described

in Section II.

One designs phase-only filters for this all-optical

algorithm by numerical techniques similar to those discussed in

Section V and The Appendix. If n = m = 1, then these numerical

techniques essentially produce the phase-only matched filter of

Horner and Gianino (Reference 21) applied to the image

- E(fl).1 . However, if m > 1. this iterative technique
differs radically from the technique of Horner and Gianino
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(Reference 24) and is necessary for optimal filter design. One

can make good binary phase-only filters for the all-optical

algorithm from these phase-only filters by a simple perturbation

of the one-dimensional optimization techniques discussed in

Section II and in Reference 8. Let h7 be the discriminant
,

function such that 7(h7) is the optimized phase-only filter made

from the image t2 (first discussed in Section IV) for this

all-optical algorithm, with its 11 x 11 lowest frequency pixels

set equal to 0 as discussed in Section III. Figure 23 shows a

south-to-north view of the entire correlation plane of t2 versus

7(h7 ). How does this all-optical algorithm perform against

targets which are nontrivial and vaguely similar to t2? Figure

24 shows an M113 from the first series of targets. Let t9 be the

M113 of Figure 24 embedded into a background which is constant

and equal to the constant background of t2 . Figure 25 shows a

south-to-north view of the entire correlation plane of t9 versus

7(h7 ). The horizontal bar in both figures is at the height

T2 (hT7. In this instance the all-optical algorithm using the

optimized phase-only filter 7(h7 ) has solved the aperture

problem, recognizes the M48, and adequately discriminates against

the M113, for in Figure 25, where the entire correlation plane

may be regarded as noise, the threshold to peak noise level is

72.0. This is only a simple instance of the efficacy of the

all-optical algorithm, but in general the phase-only filters and

their optimized binarizations for the all-optical algorithm made

by tne numerical techniques mentioned here can be packed with a

great deal of information, are stable under perturbations in the

training set, have a very low false alarm rate, and are extremely

insensitive to backgrounds consisting of high variance, high

mean, Gaussian or uniform noise. Furthermore, empirical evidence

suggests that for the sort of targets used here in a background

of zero amplitude, this all-optical algorithm improves
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Figure 23. t2 vs. T(h7 ) , South-to-North Correlation Plane View
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Figure 24. M113 Amplitude Image in Blank Background
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Figure 25. t9 vs. Y(h 7) ,South-to-North Correlation Plane View
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discrimination by more than 25 percent over the standard

correlator algorithm.
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SECTION IX

THE FOURTH SOLUTION: AN ALGORITHM MODIFICATION
PLUS PROPER FILTER DESIGN

This section is devoted to an optical-digital solution of

Problem #2 of Section V. It has no advantage over the solutions

presented in Section VI and Section VII, but it does have the

advantage over the all-optical solution presented in Section VIII

in that a major perturbation of the standard optical correlator

architecture is avoided, no optical subtractions need be done,

and the digital computations needed instead are extremely fast.

It unfortunately has the serious flaw that it is not translation

invariant. However, it was thought worthwhile to present these

ideas, for some correlators (such as the tandem correlator,

Reference 34) which lack translation invariance appear to be of

interest to the optics community. Furthermore, the translation

invariance of this correlator appears to be so unstable that it

might well find a possible application in pointing and tracking.

A preliminary presentation of the ideas presented in this section

was made in Reference 20.

The all-optical algorithm presented in Section VIII may be

thought of as a process by which the number

1<(f - IE(f)IXA),hx>1
2

is stacked over each point x of the input plane. For a carefully

crafted h the quantity

1<(f - IE(f)IXA),hx>l
2

should be relatively large if there is something of interest

centered over x and should be relatively small if there is

nothing of interest centered near x. But note that
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The gist of the optical-digital algorithm is to replace the

quantities

1<(f - IE(f)IXA),hx>l
2

with the quantities

(I<f,hx>1 - IE(f)j LI<XA,hx>l)
2

in this stacking process. There is no apparent physical

interpretation for this idea, but it was suggested by purely

mathematical considerations, the success of the all-optical

algorithm presented in Section VIII, the desire to eliminate the
need for optical subtractions, the desire to reserve for optics

what optics does best, viz., correlations, and the desire to

reserve for digital calculations only very simple fast

operations.

The following is the sequence of operations to b(

in carrying out the optical-digital aigorithm:

(i) input the image XA and measure and store the quan

I<XA,hx> 2;

(i.i) input the image f, take its Fourier transf,

measure IE(f)1 2 = C1(f)(O,O)l2 , store IE(I and ct,

and store IE(f)I;

(iii) measure and store the quantities I<f,hx>1 2 :

(iv) digitally compute the quantities

I<f,h >2  + IE(f)1 2 I<xA,hx>! 2 -

2JZ(f) l'(I<f,h x>1 2."<XA,hx>l 2)
(1/2)

= (I<f,hx>I - IE(f)I'.<XA,hx>I)2 .

This optical-digital algorithm can be implemented in the

standard correlator architecture, supplemented by some digital

electronics, with only one minor change. Step (ii) requires the
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measurement of the quantity pL(f)(O,O) 2 .- This can be done by

placing a detector element in the middle of the spatial light

modulator. As was pointed out before, some of the low frequency

pixels in these phase-only filters were set equal to 0.

Therefore, this detector element will not interfere with the

implementation of the these phase-only filters. Up to a

universal constant depending on the design of the correlator but

independent of f, 7(f)(0,O) is a scalar multiple of E(f). So

there indeed is a positive universal constant C, dependent on the

design of the correlator but independent of f, so that IE(f) 2 =

Cj'r(f)(o'o)j 2 . C can be theoretically calculated and its value

checked by measurements. The digital computations required in

step (iv) should proceed at a rapid pace. Step (iv) was w;ritten

in what appears to be a rather awkward sequence of substeps, but

the latter are designed to make maximal use of the measured

stored quantities and to minimize the number of square root

operations. The square root operations might be a potential

bottleneck, but it is plausible that state-of-the art specialized

square roots chips will allow this algorithm to proceed at a

frame rate of several thousand per second for a 128 x 128 device.
Furthermore, for purposes of recognition and discrimination, it

is probable that ohe will need to compute the square roots in

step (iv) with only two significant places of accuracy. This can

be accomplished by simple lookup table procedures and should

allow the digital portion of the optical-digital algorithm to

proceed at whatever pace is needed. Use the term optical-digital

architecture to denote the standard optical correlator

architecture with the very slight modification discusse( here.

The optical-digital algorithm requires a new measure of

performance of the discriminant function h. In this new context

defini the signal-to-noise ratio of h to b,

SNR 3 (h) = T3 (h)/N 3(h) (7)
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where T3(h), the threshold of h, is defined to be

T3(h) =

min m&x (I<fi,hx>l -- E(fi) I <XA,hx>) 2  (8)
< i < n x e Bi

and where N3 (h), the noise of h, is defined to be

N3 (h)

<im max (<fi,hx> - IE(f hx>I) (9)S< i < m x i Bi  xiIIX~xl

In these formulas the fi s; Ri's, and the Bi's are as described

in Section II.

SN.3 (h) and T3(h) are even more nondifferentiable than are
SNR 1.(h), SNR 2 (h), T,(h), and T2(h). However, the mathematical
techniques and algorithms described in Section V and The Appendix

work in this case also. One designs phase-only filters for this
optical-digital algorithm by methods that are philosophically

similar to but technically more difficult than the methods

discussed in previous sections. One can make good binary

phase-only filters for the optical--digital algorithm from these
phase-only filters by a simple perturbation of the

one-dimensional optimization techniques discussed in Section II

and in Refere.,ce 8. Let h8 be the discriminant function such

that 7(hs)* is the optimized phase-only filter made from t2 for

the optical-digital algorithm by the methods diE:ussed here.
Figure 26 shows a south-to-north view of the entire correlation

plane of t2 versus 9 (hs) , and Figure 27 shows a south-to-north

view of the entire correlation plane of t. versus 7(h.) . The

h rizontal bar in both figures is at the height T3 (h). In this
instance the optical-digital algorithm has solved the aperture
problem, recognizes the M48, and adequately discriminates against
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Figure 26. t2 vs. T(h8 ) , South-to-North Correlation Plane View

86



Figure 27. t9 vs. Y(h8) South-to-North Correlation Plane View
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TABLE 12. STABILITY OF Y(h9 ) VERSUS THE M48 IMAGES

M48 Image Peak Signal/T(h9 )

1 1.0000150

2 1.0000675

3 1.0000921

4 1.0000422

5 1.0001456

6 1.0000572

7 1.0053832

8 1.0000864

9 1.0000509

10 1.0000657

11 1.0001077

12 1.0000860

13 1.0000537

14 1.0000387

15 1.0155759

16 1.0000606

17 1.0000454

18 1.0378693

19 1.0000432

20 1.0000947

21 1.0000000
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no information about the M113 images was used in the construction

of h9. Carefully designed binary phase-only filters work well in

this optical-digital architecture. Use an obvious perturbation

of the one-dimensional optimization techniques discussed in

Section II applied to h9 to obtain h1o, a discriminant function
*9

such that 7(h10 ) is a binary phase-only filter. Thfs

optimization process is important here, for it leads to a 25

percent increase in T3 (h1 o) and a more than doubling of SNR 3 (hlo)

over arbitrary techniques. Table 13 illustrates just how stable

a peak signal may be obtained if one uses the numerical

techniques described here to construct h10 . Furthermore, the

ratio of T3 (hlo) divided by the maximum peak signal off any of

the 21 M113's is 24.2. The average over the 21 M113 images of

T3 (hlo) divided by the peak signal off each M113 is 33.4. Thus

h 10discriminates the M48 images quite well from the M113 images.

Note again that-there was th45 .-trong signal stability and good

discrimination even though no 7,1formation about the M113 images

was used in the construction of h10 . Further simulations show

that h9 and h10 are extremely insensitive to backgrounds

consisting of high variance, high mean, Gaussian or uniform

noise. Empirical evidence suggests that for the sort of targets

used here in a background of zero amplitude, this optical-digital

algorithm improves discrimination by more than 25 percent over

the standard correlator algorithm. As a test of the power and

robustness of the numerical techniques described here to make

filters for the optical-digital algorithm, a number of tests were

run starting with a training set consisting of the 21 M48 images

from the first series in a constant background whose amplitude

was the average of nonzero pixels on the M48's themselves and

using a randomly generated 128 x 128 phase-only matrix as the

initial point in the iterative process. When completed, the

algoritims described in this report had increased the threshold

by a factor of 1.6 x 108 to a value within a few percent of that
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TABLE 13. STABILITY OF 2(h10 ) VERSUS THE M48 IMAGES

M48 Image Peak Signal/T(h1 o)

1 1.026976

2 1.014516

3 1.010611

4 1.019399

5 1.011869

6 1.016052

7 1.011435

8 1.014895

9 1.012778

10 1.026629

11 1.033311

12 1.020809

13 1.017628

14 1.011248

15 1.024196

16 1.000000

17 1.008831

18 1.030585

19 1.012348

20 1.011092

21 1.013160
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of h9. The resulting phase-only filter for the optizal-digital

architecture gave qualitatively the same signal stability and

discrimination characteristics as 2(h9) .

The algorithm discussed in this section is just one of a

whole family of possible filtering algorithms which can be used

in connection with the optical-digital architecture. In fact,

let 9(u,v) be any nonnegative function defined on the first

quadrant (u > 0, v > 0) of (u,v)-space with the property that

V(uu) = 0 if u > 0. Use the optical-digital architecture to

compute and store the quantities IE(f)1 2, I<f~h >I2, and

I<XA,hx>lI. Over each point x of the input plane stack the

number 9(1<f,h>l2 ,zE(f) 2.1<xA,hx>I2). If 9 permits, one then

needs to carefully design a discriminant function h so that T(h)

is a phase-only filter, so that 9(<f,hx> 2 ,E(f) 2 .IxA,hx>I2)

is relatively large if there is a target of interest centered at

x, and so that 9(I<f,hx>1 2,IE(f)I 2.I<XA,hx>2) is relatively

small if there is no target centered close to x. There are

obvious analogs of Equations (7) - (9) to measure the performance

of h for this optical-digital architecture and 9-dependent

filtering algorithm. To optimally design h, one would have to

devise 9-dependent iterative algorithms similar to those

described in here. 9(u,v) = (u1/2 1 v/2)2 for the case

considered above. Another choice for 9 which immediately springs

to mind is 9(u,v) = Ju2 - v 2. This 9 is attractive, for the

digital processing needed to compute it needs no square root

operations. The program sketched in this paragraph has been

carried out for ju2 - v 2, but it was found to provide only half

of the discrimination capability supplied by (ul/2 - v1/2)2

This intuitively may be traced to the observation that an

extraneous cross term is approximately canceled if one chooses V
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to be (ul/2 -I/ v1  2 rather than 1u2 - ,2 I.
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SECTION X

CONCLUSIONS

There were two. objectives to this program. First, dev.w".,

mathematical techniques and algorithms to solve the complicated,

nonlinear, nondifferentiable minimax questions in a large number

of variables which arise in the formulation of phase-only filter

design given in Section II. Implement these techniques and

algorithms into effective and efficient computer codes. Second,

use these mathematical techniques, algorithms, and computer codes

to resolve the background problem in target recognition described

in detail in Section IV. These objectives have in large measure

been accomplished. The mathematical techniques are described in

Section II, Section V, and Appendix A, and their implementation

into computer codes is discussea in Section V. Four solutions to

the background problem were given in Section VI, VII, VIII, and

IX. The solution discussed in Section VI is the current

favorite. The approach and techniques discussed in Section VI

should be tested in simulations over a wide range of training

sets and the resulting filters implemented and tested in actual

equipment. The approach and results presented in Section VII are

very new and thus very preliminary. Nonetheless, the results of

this new approach are so encouraging that a large effort is

justified to test it exhaustively. It is questionable if the

solution presented in Section VIII is practical for applications

in the military sphere, for it is ditficult to envision an

equipment implementation which does not employ two input devices

(but, on the other hand, the currently fashionable joint

transform correlator also needs two input devices) and, in

addition, a delicate optical subtraction needs to be performed.

The methods presented in Section VIII might find some commercial

and/or manufacturing use, but an effort should be expended in its
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study only if the ideas advocated in Section VI and Section VII

fail. The solution presented in Section IX is not useful for

target recognition since it is not translation invariant, but it

might prove useful in a pointing and tracking application.
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THE APPENDIX

THE CHOICE OF AN OPTIMAL SEARCH DIRECTION
AS A GEOMETRIC PROBLEM

The contents of this mathematical appendix certainly must be

well known, but it is difficult to give a reference for a

coherent discussion of the topics considered here. Optimization

questions of various sorts are familiar to anyone who has taken a

calculus course or an operations research course. The sort of

optimization question of interest in this study does not seem to

fall neatly into either of these subject areas, but rather

involves aspects of both. All of the optimization problems

discussed in previous sections can be cast into the following

general form. Let X be a nonempty open subset of the

k-dimensional Euclidean space Rk. Let V1,..., N be a finite

sequence of differentiable functions on X which are bounded

below. Define a function V on X by setting

9(x) = min pi(x)1 < i < N i

for each x in X. Problem: Find an iterative algorithm to drive

V to a local maximum on X. This problem is somewhat involved,

for even though each Vi may be as differentiable as could be

desired, V itself almost always is not. This is not merely a

pedantic point, for all of the difficulty in optimizing V occurs

at those points where V is not differentiable. Hence, simple

steepest ascent methods do not apply here. In the problems

considered in previous sections, V is actually a function on a

very large torus or product of circles and not an open subset of

some Euclidean space. However, any such torus is locally

parameterized by an open subset of some Euclidean space, and the

discussion here encompasses the problems considered in previous

sections. In the previous sections a typical size for k is 1282 -
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112 = 16,263 and N can vary between the relatively small number
of images in the training set when optimizing a threshold to a

number in the millions when optimizing a signal-to-noise ratio.

Because of the large number of functions involved and the large

number of variables, it is important to use algorithms in which

no large sets of linear equations need be solved or large

matrices inverted. The algorithm sketched below has this

property.

Suppose a point x0 in X is given. An iterative scheme

involves the choice of a feasible direction (or unit vector) d in

Rk so that 9(xo) < V(x0 + ad) for some sufficiently small

positive number a. Given that such a direction d exists, it is

desired to choose the best possible d. If no such d exists, then

the iteration stops. In order to determine whether or not such a

d exists, one proceeds as follows. Let F be the set of all

integers i between 1 and N such that i is active-such that

Vi(xo) is very close to 9(xo). Sometimes, particularly at the
beginning of an iteration, the size of F might be 1, but in

practice it quickly grows to be rather large. The size of F of

course depends on what tolerance is used to determine when Vi(xo)

is very close to V(xo). This tolerance usually should go to 0 as

the iteration proceeds. Calculate the gradients vj = (Vo.)(xO)

(j E F). A direction d is feasible provided each dot product

vi.d is positive. The best direction d to choose is the solution

to

max min v.'d (A-i)

d ERk i E F
Idl = 1

where lxi is the length of the vector x E Rk . Apparently one

intractable problem has been replaced with another. However,

this is not the case, for the vector d which solves Equation
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(A-i) admits an interesting geometric interpretation.

Let P be the polytope in Rk spanned by the vectors v.

(j E F). P in fact is the convex hull of the vectors vj (j E F),
viz.)

p r E tjv 0 j , E, t. 1]
L j E F -v t 1 0, j E F =

Note that if the origin O E P, then there is no unit vector d

such that vj.d > 0 (j E F). For if vj.d > 0 (j E F), then v'd >

0 for all v E P. But Od = 0. This is an obvious contradiction,

and so there is no unit vector d such that vj.d > 0 (j E F) if 0
E P. In this case either the tolerance used in determining F

must be shrunk or the algorithm must terminate, for there is no

feasible direction in which to move to try and improve 9. So it

may be supposed that 0 0 P. P is a compact convex subset of Rk

and therefore contains a unique point w E P which is closest to

but distinct from 0. Then d = w/Iwj is the unique solution to

Equation (A-i). To prove this, note that

Itv + (I - t)wI2 > Il 2

for all 0 < t < 1 since P is convex and w is the point of P with

smallest length. Expanding, this implies that

t2v-v + 2t(l - t)v'w > t(2 - t)w'w.

Divide this expression by 2t and then let t -* 0+. One obtains

that

v-w > W.W

for all v E P. This implies that

v'd > w'd = IwI
for all v E P. This in turn implies that

w'd = lwI = min v..d
j EF 3

since w is a convex combination of the vj (j E F). Now let d' be

any other unit vector distinct from d = w/lwi. Then
-4- w_ ' < Iwi-Id' i = lwl = rin v..d

j E F3 rj EF 3

by the strict form of the Cauchy-Schwarz inequality. Hence,
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d = w/lI is the unique solution to Equation (A-i).
The above analysis implies that one can find the best

direction d = w/IwI to move by finding the

wE F tjvjj EF 3

which solves the quadratic programming problem:

minimize I E F
tj

subject to the constraints tj > 0, E tj = 1.
j EF

Speed is of the essence in solving this problem, for it is only
an intermediate problem in each iterative step. If the size of F
is two or three, then a good approximate solution can be found by
Monte Carlo methods. This is certainly not a cure-all, for heavy
handed reasoning shows that if one wants an approximate solution
within 6 of the true solution and the size of F is p, then one

will have to make approximately (I/6)P iterations. This
quadratic programming problem can be solved by standard quadratic
programming techniques which are given in Dantzig, Reference 35.
This technique is relatively slow and in essence involves solving
systems of linear equations. Techniques which avoid this are to
be preferred because the size of F can be large. There appear to

be very fast iterative algorithms for solving this polytope
problem (less than a second on a VAX 11-785, even if the number

of vectors is 250 or more) which usually give at least an order
of magnitude improvement in speed in most cases of interest over
any other techniques. Algorithms which incorporate such
iterative algorithms have been incorporated into the design codes

discussed in this report.
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